
Introduction

A high serum level of HDL lowers the risk of myocardial 
infarction. The predominant protein associated with 
HDL is apoA-I which is synthesized in hepatocytes and 
enterocytes [1-3]. A high serum level of apoA-I lowers 
the risk of myocardial infarction [4, 5]. Although apoA-I 
plays a central role in the regulation of lipid metabolism 
and thus in prevention of myocardial infarction, little 
information is available on the regulation of its synthesis. 
ApoA-I is synthesized as a 267 amino acid precursor 
protein, preproapoA-I [6-13]. The presegment is 18 amino 
acids long and cotranslationally cleaved off, resulting 
in proapoA-I [11-16]. ProapoA-I is the precursor of the 
mature apoA-I, differing from apoA-I by a hexapeptide 
extension at the N-terminal end [14]. For rat apoA-I three 
slightly different propeptides have been described: Trp-
Glu-Phe-Trp-Gln-Gln (WEFWQQ) [8], Ser-Glu-Phe-Trp-
Gln-Gln (SEFWQQ) [15], and Trp-Asp-Phe-Trp-Gln-Gln 
(WDFWQQ) [16]. The amino acid sequence of the human 
propeptide has been shown to be Arg-His-Phe-Trp-Gln-Gln 
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Abstract

Addition of chemically synthesized proapolipoprotein A-I hexapeptides in a concentration of 10-4 mol/l in the medium of 
primary rat hepatocyte cell cultures decreased net apolipoprotein A-I synthesis by up to 13%. The inhibition was dose 
dependent and slightly different for the three peptides with differing amino acid sequences. The synthesis of albumin 
remained unaltered. In a reticulocyte cell-free system the three propeptides, in a concentration of 10-4 mol/l, inhibited 
apolipoprotein synthesis by 42%, 43%, and 48%, respectively. Total protein synthesis was inhibited by 19%, 22%, and 24 % 
only. All three propeptides in concentrations of 10-7 to 10-4 mol/l inhibited apo A-I synthesis in a dose dependent manner, 
indicating that the identical C-terminal sequence (Phe-Trp-Gln-Gln) is responsible for the inhibitory effect. The synthesis of 
albumin was not inhibited. The proalbumin hexapeptide (Arg-Gly-Val-Phe-Arg-Arg) at a concentration of 10-3 mol/l inhibited 
albumin synthesis by 63% whereas incorporation into apoA-I was inhibited by only 14%. Amino acids in concentrations 
equimolar to the propeptides had no effect on the incorporation into total protein, apoA-I, and rat serum albumin. These 
results suggest that the synthesis of apolipoprotein A-I is regulated by a feedback mechanism with its propeptide as 
inhibitor.
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(RHFWQQ) [8, 11, 17]. The apo A-I prosegment differs from 
propeptides of other serum proteins in two respects: it 
does not terminate with paired basic amino acids [6] and 
its processing is extracellular rather than intracellular [3, 
8, 14-20]. The hexapeptide is slowly split off in plasma by 
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a Ca2+/Mg2+ dependent protease, located on the surface 
of plasma lipoprotein particles and endothelial cells [14]. 
The bone morphogenetic protein-1 has been identified 
as enzyme that cleaves human apolipoprotein A-I [21]. 
The procollagen C-proteinase enhancer is involved in the 
proteolytic processing of proapoA-I [22]. Several possible 
functions of the propeptide extension have been discussed. 
It may be involved in the formation of the tertiary structure 
of apoA-I or it may facilitate transport through or out of 
the cell [23, 24]. In addition, the propeptide itself may have 
a biological function and be involved in the regulation 
of apoA-I synthesis, as has been described for other 
propeptides such as albumin [25] and procollagen [26-31]. 
All three rat propeptides were synthesized chemically. In 
order to test the hypothesis that the released propeptide 
is involved in the regulation of apoA-I synthesis, we studied 
the effect of the chemically produced hexapeptides on the 
synthesis of apoA-I in primary rat cell cultures and in a cell-
free system. To evaluate the specificity of the inhibition we 
also studied the effect of the propeptide of albumin on 
albumin and on apoA-I synthesis.

Materials and methods

Chemical synthesis of peptides
The hexapeptides of proapoA-I and of proalbumin were 
synthesized conventionally, beginning from the C-terminal 
end by stepwise N-terminal peptide chain elongation 
(Orpegen, Heidelberg, Germany). Details of the synthesis 
of the hexapeptides have been published previously 
[32]. Purity of the peptides was confirmed by thin-layer 
chromatography, HPLC, amino acid analysis and mass 
spectrometry [33]. Quality control of synthetic peptides 
was kindly performed by W.D. Lehmann, DKFZ Heidelberg, 
Germany.

Purification of apolipoprotein A-I and antiserum preparation
HDL was isolated from plasma of male Wistar rats by 
density gradient centrifugation according to [34] as 
described previously [35]. After centrifugation for 20 
min at 1000 g at 4°C, the supernatant was submitted to 
a density gradient of KBr and NaCl and centrifuged for 
20 min at 3000 g at 4°C. Aliquots of 4 ml of the pooled 
HDL fractions were pipetted into polyallomer tubes. A 
discontinuous gradient was formed by carefully layering 3 
ml of a NaCl/KBr solution with a density of 1.063 above 
the serum, followed by 3 ml of NaCl/KBr solution with a 
density of 1.0191,23 and centrifuged at 280.000 g at 20°C 
for 24 h. Subsequently HDL was extensively dialysed 
against PBS +0.01 % EDTA at pH 7.4. After extraction with 
ether/ethanol apoA-I was isolated by gel chromatography 
on a Sepharyl S-200 column and subsequently submitted 
to isoelectrofocusing at the pH range between 5.5 and 
5.7. Peak 3 of the Sepharyl S-200 column showed one 
band at pH 5.6, indicating that apoA-I was pure (Figure 1). 
This band was eluted with 5 M urea at pH 8.5, extensively 
dialysed against 0.01 M NH4HC03 + 0.01 EDTA at pH 7.4, 
and lyophilised [35, 36]. Purified apoA-I was used for 
production of specific antiserum by immunisation of 
rabbits. Purification of albumin and production of albumin 
antiserum was performed as described previously [37, 
38].

Primary hepatocyte cell cultures
Hepatocytes were isolated by perfusion of rat liver with 
collagenase [39]. Viability was estimated by Trypan blue 
staining. Hepatocytes were suspended to a concentration 
of about 106 cells per ml in Williams medium containing 
10% calf serum, 2 mM glutamine, 50 U/ml penicillin, 
and 50 µm/ml streptomycin. Two hrs later medium was 
exchanged by serum free medium [40, 41]. With the 
change of medium after 24 hrs of incubation the peptides 
of apoAI were added in concentrations of 10-7 to 10-4 mol/l. 
Control cultures were incubated with peptide free medium 
or with the albumin hexapeptide in concentrations of 10-5 
to 10-3 mol/l. Twenty four hrs later medium was withdrawn 
and centrifuged for 10 min at 3000 g. Subsequently total 
protein, apoA-I and RSA concentrations were measured in 
the supernatant [42]. Each measurement of the proteins 
was done in duplicate. The mean value was calculated from 
six different cell cultures. The synthesis rate of apoA-I and 
albumin was related to total protein in the supernatant 
(ng/mg) and expressed in percent.

Cell-free protein synthesis
Total rat liver RNA was isolated by extraction with 7 M 
guanidine-HCL and centrifugation on a CsCl gradient. 
Subsequently mRNA was isolated by chromatography on 
oligo (dT)-cellulose [42]. 3H - leucine was incorporated into 
protein using a cell-free lysate from rabbit reticulocytes 
(NEN) with 1.5 µg of the isolated m-RNA as described [25, 
43]. The reaction mixture was incubated with hexapeptide 
concentrations from 10-8 to 10-4 mol/l for 50 min at 37oC.

Measurement of total protein, apolipoprotein A-I, and 
albumin
Total protein was measured in the supernatant of 
hepatocyte cell cultures and in the cell-free system by the 
Bio-rad assay with BSA as standard according to [44]. Total 
protein synthesis was measured as hot trichloroacetic 
acid insoluble radioactivity [45]. ApoA-I and albumin were 
measured in the supernatant by Elisa using a modified 
commercially available kit (Avidin alkaline phosphatase 
staining, Sigma) [46] by precipitation with specific 
antiserum.

Statistical analysis
Results are expressed as mean + SD of a number of 

Figure 1 Peak 3 of the Sepharyl S-200 HR column showed one band at pH 
5.6 by isoelectrofocusing, indicating that apoA-I was pure. This band was 
eluted with 5 M urea, dialysed, and lyophilised and subsequently used for 
production of specific antiserum.
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determinations as indicated. The data were compared 
by Student´s t test. Differences were considered to be 
statistically significant when p < 0.05.

Results

Addition of WEFWQQ, WDFWQQ, and SEFWQQ to the cell 
culture, in concentrations of 10-7 to 10-4 mol/l, inhibited net 
increase of apoA-I dose dependent (Table 1). Compared to 
the control culture a peptide concentration of 10-4 mol/l 
inhibited apoA-I synthesis to 87 ± 4.9%, 90 ± 1.9%, and 94 
± 3.0% (n = 6). WEFWQQ inhibited albumin synthesis only 

Table 1 Influence of the pro-peptides on apolipoprotein A-I and albumin-synthesis in primary hepatocyte cell cultures.

Peptide conc. in medium ng Apo A-I /mg 
total protein ± SD % of control ± SD µg Albumin/mg 

total protein ± SD % of control ± SD

WEFWQQ (n = 6)

Control 118.0 ± 13.1 100.0 26.7 ± 7.9 100.0

10-7 M 112.9 ± 11.5 95.7 ± 4.3 25.0 ± 6.7 93.6 ± 2.4

10-6 M 109.0 ± 15.4 92.4 ± 5.8 24.3 ± 4.5 91.0 ± 1.7

10-5 M 103.8 ± 15.1 88.0 ± 6.1 25.6 ± 5.5 95.9 ± 2.1

10-4 M 102.4 ± 13.8 86.8 ± 4.9 25.2 ± 5.6 94.4 ± 2.1

WDFWQQ (n = 6)

Control 113.4 ± 14.7 100.0 24.7 ± 2.9 100.0

10-7 M 111.2 ± 15.5 97.9 ± 1.3 26.6 ± 3.1 107.7 ±2.1

10-6 M 107.9 ± 15.1 95.0 ± 2.4 26.2 ± 4.0 106.1 ±1.8

10-5 M 108.2 ± 12.6 95.5 ± 2.9 26.2 ± 3.8 106.1 ±2.0

10-4 M 102.0 ± 10.0 90.4 ± 1.9 25.8 ± 3.5 104.7 ±1.4

SEFWQQ (n = 4)

Control 117.8 ± 5.2 100.0 24.0 ± 2.0 100.0

10-7 M 119.1 ± 5.4 100.9 ± 1.5 23.2 ± 2.0  97.1 ± 6.6

10-6 M 114.6 ± 6.1 97.3 ± 1.2 23.9 ± 2.0  99.7 ± 4.2

10-5 M 112.6 ± 2.7 95.7 ± 2.7 23.3 ± 1.6  97.4 ± 5.8

10-4 M 110.7 ± 1.9 94.0 ± 3.0 23.6 ± 2.1  98.1 ± 6.2

RGVFRR albumin-hexapeptide (n = 1)

Control 125.3 100.0 31.0 100.0

10-5 M 124.9 99.7 29.6 95.5

10-4 M 124.1 99.0 27.2 87.7

10-3 M 123.0 98.2 23.8 76.8

slightly, and not in dose dependent manner. The other two 
peptides did not affect albumin synthesis at all. For control 
of specificity the influence of the proalbumin hexapeptide 
Arg-Gly-Val-Phe-Arg-Arg (RGVFRR) was determined on the 
synthesis of apoA-I, rat serum albumin, and total protein 
in concentrations of the peptide from 10-5 to 10-3 mol/l (n 
= 1). Proapo A-I synthesis was not influenced whereas rat 
serum albumin synthesis was inhibited in dose dependent 
manner. At a concentration of 10-3 mol/l of RGVFRR albumin 
synthesis was inhibited to 77%, confirming previous results 
in isolated hepatocytes [25]. 

Addition of WEFWQQ, WDFWQQ, and SEFWQQ to the cell-
free system in concentrations of 10-8 to 10-4 mol/l inhibited 
incorporation of 3H-leucine into apoA-I dose dependently 
(Figure 2). A peptide concentration of 10-4 mol/l inhibited 
incorporation to 57 ± 8%, 52 ± 5 %, and 58 ± 3% compared 
to the control (n = 7). Incorporation into total protein was 
less effected. A peptide concentration of 10-4 mol/l inhibited 
incorporation to 76 ± 5%, 78 ± 2%, and 81 ± 3 % only. 
Incorporation into albumin was not inhibited by the apoA-I 
propeptides. Amino acids in equimolar concentrations to 
the propeptides had no effect on the incorporation into 
total protein, apoA-I and rat serum albumin.

The proalbumin hexapeptide in concentrations from 10-6 
to 10-3 mol/l dose dependently inhibited albumin synthesis 

(n = 4). A concentration of 10-3 mol/l inhibited incorporation 
into albumin to 36 ± 8% of pretreatment value, confirming 
previous results [25], whereas incorporation into apoA-I 
was inhibited to 86 ± 3% only. The total protein synthesis 
was inhibited to 67 ± 4%. The inhibition of total protein-
and albumin synthesis was also significantly different 
compared to the synthesis of apoA-I by addition of the 
albumin propeptide (RGVFRR). The inhibition of total 
protein- and apo AI synthesis was highly significantly 
different compared to albumin synthesis and the inhibition 
of apoAI synthesis was significantly stronger than the 
inhibition of total protein synthesis.

Discussion

A high level of HDL in serum reduces the risk of 
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Figure 2abcd Influence the propeptides of apoA-I and albumin on the synthesis of apoA-I, total protein, and albumin in percent of the control (without 
peptides); *(p < 0.05).
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atherosclerosis and myocardial infarction [4]. The major 
protein associated with high density lipoproteins is 
apoA-I and the apoB/apoA-I ratio is superior to any of 
the cholesterol ratios for estimation of the risk of acute 

myocardial infarction [47, 48]. ApoA-I is synthesized in 
the liver as preproprotein. It undergoes co-translational 
proteolytic processing to proapoAI which is secreted. 
Subsequently the propeptide is split off extracellularly 

Synthesis
in % of
control

Hexapeptide mol/I

Hexapeptide mol/I

Hexapeptide mol/I

Hexapeptide mol/I

Synthesis
in % of
control

Synthesis
in % of
control

100

90

80

70

60

50

40

100

80

60

40

20

0

10-6                 10-5                 10-4                10-310-8                10-7                10-6               10-5               10-4

100

90

80

70

60

50

40

100

90

80

70

60

50

40

A-I

AIb

TP

TP

AIb

A-I

X  SD, n = 7

X  SD, n = 7

X  SD, n = 7

RGVFRR

X  SD, n = 7

WEFWQQ

SEFWQQ

WDFWQQ

Synthesis
in % of
control

AIb

AIb

TP
TP

A-I

A-I

Weigand K et al., J Hepatol Gastroenterol. 2017, 2(3):12-17

10-8                 10-7               10-6               10-5               10-410-8                    10-7                10-6                10-5                10-4



16

[14]. Not all proapolipoprotein A-I molecules are converted 
to mature apolipoprotein [49]. In HDL, isolated from 
serum, 36% of lipoprotein A-I was found in its pro form 
[50]. It has been shown that primary cell cultures of rat 
and human hepatocytes [51, 52] and cell-free systems [9, 
10, 53] can synthesize apolipoprotein A-I. Therefore, these 
two systems allow the study of synthesis and regulation 
of apoA-I.

Three slightly different propeptides of apoA-I have been 
identified. However, the COOH-terminal amino acids 
sequences of all three rat propeptides and also of the 
human propeptide are identical, indicating that these 
structures are essential for its function. Apo A-I synthesis 
is strongly inhibited by all three peptides in the cell fee 
system. In primary hepatocyte cell cultures apoA-I synthesis 
is although inhibited, but to a lesser degree. This may be 
due to a limited uptake or degradation of the peptides by 
the cells. The weaker inhibitory effect of SEFWQQ in the 
cell culture compared to the other two peptides may also 
be explained by a lower uptake rate of this peptide by the 
hepatocytes.

Albumin synthesis is not inhibited by the apoA-I propep-
tides, indicating a specific feedback inhibition of apoA-I 
synthesis by its propeptide. The specificity of this inhibition 
is further supported by the fact that the albumin propeptide 
inhibits the synthesis of albumin but not of apoA-I.

Proteolytic processing of proproteins can lead to biological 
active peptides, like insulin. For other peptides, released 
from proproteins, such as albumin and procollagen no 
definite biological functions have been demonstrated. 
An extensive review of structures, processing, and 
possible functions of propeptides are discussed by [54]. 
Interestingly, the synthesis of albumin and of procollagen 
type III are inhibited by their specific propeptides [25 -31]. 
Not only proteins which are synthesized via proproteins can 
be inhibited on the translational level. The key enzymes for 
the biosynthesis of polyamines, ornithine decarboxylase 
and S-adenosylmethionine decarboxylase are specifically 
inhibited by the polyamines spermine and spermidine 
[55]. We could demonstrate also that the synthesis of 
apolipoprotein A- I is specifically inhibited by its propeptide 
at the translational level. This is in agreement with the 
fact that the level of apolipoprotein A-I mRNA is primarily 
regulated post-transcriptionally through a higher stability 
or increased mRNA half-life, as has been reported [56]. 
Peptides with a low molecular weight can inhibit protein 
synthesis by binding to mRNA [57, 58]. Whether the same 
mechanism is responsible for the inhibition of apoA-I 
synthesis by its propeptide remains to be investigated. 

Many drugs have been developed to reduce the risk of 
atherosclerosis and myocardial infarction in patients 
with elevated cholesterol. The majority of these drugs 
reduce the LDL level. Only one drug on the market acts to 
increase the HDL level. Although this drug, torcetrapib, a 
cholesteryl ester transfer protein inhibitor, increases HDL 
cholesterol levels, it is not associated with a significant 
decrease in progression of coronary atherosclerosis 
[59]. However, this finding does not exclude a beneficial 
effect of increased HDL. The lack of efficacy may be 

related to the mechanism of action of torcetrapib or 
molecule specific effects [59]. Furthermore this drug was 
associated with an increase in systolic blood pressure [59-
61]. Therefore, it might well be that a drug stimulating 
apolipoprotein A-I synthesis and thus increasing HDL level 
by another mechanism, leads to a decrease in coronary 
events. Another approach to stimulating HDL may be with 
apolipoprotein A-I mimetic peptides which emulate many 
of the atheroprotective biological functions attributed to 
HDL [62, 63]. If the observed inhibition by its propeptide is 
of physiological relevance in the synthesis of apoA-I then 
a modified peptide, competing with the propeptide, may 
be able to increases the rate of synthesis of apoA-I. Such 
a drug would be easier to produce than a more complex 
apolipoprotein A-I mimetic peptide. In addition to its 
atheroprotective function a high level of apolipoprotein 
A-I may also be helpful in the prevention of Alzheimer’s 
disease by modulation of Abeta aggregation [64].
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