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Abstract

A unique feature of medical imaging is that the object to be imaged has a compact support. In mathematics, the Fourier transform of a 
function that has a compact support is an entire function. In theory, an entire function can be uniquely determined by its values in a small 
region, using, for example, power series expansions. Power series expansions require evaluation of all orders of derivatives of a function, 
which is an impossible task if the function is discretely sampled. In this paper, we propose an alternative method to perform analytic 
continuation of an entire function, by using the Nyquist–Shannon sampling theorem. The proposed method involves solving a system 
of linear equations and does not require evaluation of derivatives of the function. Noiseless data computer simulations are presented. 
Analytic continuation turns out to be extremely ill-conditioned.
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1 Introduction

It is known that for stable image reconstruction using noisy 
data, measurements must be sufficiently acquired. There 
are many data sufficiency conditions that are proposed. 
For example, in cone-beam imaging, Tuy’s condition 
must be satisfied [1]. Tuy’s condition requires that the 
cone focal point trajectory must interest every plane that 
cuts the object being imaged. In PET (positron emission 
tomography), Orlov’s condition must be satisfied [2]. Orlov’s 
condition requires that every great circle must intersects 
the trajectory of the unit vector that is the direction of the 
projection rays. In MRI (magnetic resonance imaging), the 
k-space (i.e., the Fourier space) preferably should be fully 
sampled.

As theoretical curiosity, one would wonder whether it 
is possible to reconstruct the image using incomplete 
data. This subject has been systematically discussed in 
Natterer’s book [3], where the incomplete data situations 
are classified in to 3 categories: limited angle problems, 
exterior problems, and truncated problems. For the limited 
angle problems and exterior problems, the inversion is so 
seriously ill-posed that it is hopeless to have any practical 
value.

The goal of this paper is not to develop an algorithm that 
can be used immediately in practice. The motivation of 
this paper is purely theoretical. Assuming that we live in 
an ideal world without any noise around, we investigate 
whether it is possible to reconstruct an image using 
incomplete measurements.

In medical image, different modalities have their unique 
ways to acquire data. MRI is the most relevant modality to 
this paper, because MRI measurements are in the Fourier 
domain. In PET or CT, the measurements are in the spatial-
domain. If the projection measurements are truncated, 
their Fourier transform does not exist. When no point 
in the Fourier domain is measured, this situation is not 
relevant to this paper. Under certain conditions, truncated 
projections may produce satisfactory images, even though 
Fourier measurements are not available. If the projections 
are not truncated, the Fourier transform can be taken, and 
the central slice theorem applies. The central slice theorem 
indicates what frequency components are measured and 
what frequency components are not measured.

When Fourier measurements are incomplete, we can try to 
reconstruct the image using the available measurements 
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and some prior constraints. As implied in this paper, trying 
to estimate the unmeasured data may not be fruitful.

2 Methods

2.1 Mathematical foundation

A function has a compact support if it is zero outside of 
a compact set that is closed and bounded. The Fourier 
transform of a compactly supported function is an 
entire function. An entire function is a complex-valued 
function that is holomorphic at all finite points over the 
whole complex plane. A holomorphic function is complex 
differentiable at every point of its domain. Any holomorphic 
function is infinitely differentiable and equal, locally, to its 
own Taylor series. A holomorphic function whose domain 
is the whole complex plane is called an entire function [4].

The possibility of imaging with incomplete data is established 
as follows, using a one-dimensional (1D) example. The 
object f(x) is compactly supported, for example, defined 
on [-½, ½] and f(x) = 0 elsewhere. Let F(ω) be the Fourier 
transform of f(x). Assume that f(x) is unknown, F(ω) is 
partially known. Without loss of generality, F(ω) is assumed 
to be known in a small region around the point ω = 0. One 
can evaluate derivatives of F(ω) at all orders, and thus 
construct the Taylor series of F(ω) at ω = 0. Since F(ω) is an 
entire function, this Taylor series converges to F(ω) in the 
entire complex plane. In other words, F(ω) becomes known 
in the entire complex plane through analytic continuation.

This analytic continuation of F(ω) is actually of no use in 
practice, because most real world measurements are 
discrete. This fact inhibits the evaluation of derivatives 
of F(ω), and thus the Taylor series of F(ω) cannot be 
obtained.

2.2. Lagrange interpolation method

Other than the Taylor series expansion, the Lagrange 
interpolation formula can be an alternative method to 
perform analytic continuation [5]. The essential idea of the 
Lagrange interpolation formula is to find the lowest order 
polynomial that passes through given points.

We do not believe that the Fourier transform of a compactly 
supported function in medical imaging behaves like a 
polynomial. The energy of a compactly supported function 
f(x) is finite. Parseval’s Theorem tells us that the energy 
of its Fourier transform F(ω) is the same and finite. As 
|ω|∞, we must have F(ω)  0. Hence, F(ω) cannot behave 
as a polynomial, because the magnitude of a polynomial 
tends to infinity as the magnitude of the variable tends to 
infinity.

2.3 Nyquist-Shannon method

If a spatial-domain function is band-limited, then this 
signal can be represented by its discrete samples, and 
the sampling interval is inversely proportional to the 
bandwidth. If we switch the roles of these two domains, 
the spatial-domain function f(x) is spatially bounded and 
the corresponding Fourier domain function F(ω) can be 
represented by its discrete samples. The Fourier domain 

sampling interval Δω is inversely proportional to the spatial-
domain object size. According to the Nyquist-Shannon 
Theorem, we can express the complex Fourier domain 
function F(ω) by its own samples F(nΔω) as
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Formula (1) is referred to as the Whittaker-Shannon 
interpolation formula. Formula (1) implies that the function 
F(ω) is sufficiently determined by its discrete values F(nΔω), 
where  n  Z (integers). Because f(x) is the inverse Fourier 
transform of F(ω), the spatial-domain compactly supported 
function f(x), in turn, is determined by the samples F(nΔω).

According to the fact that F(ω)  0 as |ω|  ∞, we can 
obtain an approximate expression of (1) by using only a 
finite number of terms in the summation:
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It is reasonable to further assume that the function f(x) 
is real and F =Fr + iFi, and then the real part Fr(ω) is even 
and the imaginary part Fi(ω) is odd. Therefore, (3) can be 
written as
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2.4 Proposed method

This part presents the main result of this current paper. 
We consider a Fourier transform pair: f(x) and F(ω), where 
f(x) is real and has a compact support, and F(ω) is complex 
and entire. The spatial-domain function f(x) is unknown. 
The Fourier domain function F(ω) is measured at discrete 
points, ωk, k = 1, 2, …, M, which are in a smaller interval than 
[-N, N]. Let us form 2 real column vectors:

p F F F F F Fr r r M i i i = [ ( ), ( ), ..., ( ), ( ), ( ), ..., (ω ω ω ω ω1 2 1 2 ωωM
T)]  (5)

 and

u F F F N F F Nr r r i i
T= ∆ ∆ ∆ ∆[ ( ), ( ), ( ), ( ), ( )]0   ...,   ω ω ω ω   (6)

The vector p contains the measurements, and the vector 
u contains the unknowns. It is allowed that some of the 
unknowns are the measurements. The approximations 
(4a) and (4b) can be written in the matrix form as

 Au p≈                                                                     (7)
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where the real (2M) × (2N + 1) matrix A is determined 
according to (4a) and (4b). A numeric algorithm is required 
to solve the unknown vector u from (7). Once the vector u 
is obtained, the spatial-domain function f(x) is constructed 
by u as follows.

If we consider the compactly supported function f(x) as 
one period of a periodic function, then f(x) has a Fourier 
series expansion

 f x c e c en
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where T is the period and can be same as (or larger than) 
the span of f(x). Since the Fourier transform of f(x) is 
defined as
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we have

 c
T

F n
Tn =








1                                                      (11)

If we choose Δω=1/T, the Fourier series coefficients can 
be obtained by solving (7). When the Fourier series (8) is 
truncated, the summation can be implemented by the 
(2N+2)-point inverse discrete Fourier transform (IDFT) or 
the inverse fast Fourier transform (IFFT).
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where cN+1 = 0 and cN+1+k = c*
N+1-k, k = 1, … , N.

 
Solving for u from (7) is challenging, because the system 
is seriously ill-posed. In the computer simulations in this 
paper, no noise is added to the measurements p. The 
computer round-off errors are already serious enough 
to make the solution deviate from the true solution. The 
following approaches can be used to find the vector u.

Approach 1:
The Moore-Penrose pseudo inverse with a tolerance tol. 
This approach finds the singular value decomposition 
(SVD) of the matrix A and replaces the singular values 
that are smaller than tol by zeros before calculating the 
generalized inverse of A.

                                                                 (13)

Approach 2:
 min(|| || || || )Au p u− +2 2 α
                       u                                                                            

(14)

Approach 3:
 min(|| || || || )Au p u− +1 2 α
                      u                                                                            

(15)

Approach 4:
 min(|| || || || )Au p u− +∞  α 2
                      u                                                                            

(16)

 
Approach 5:
 min(|| || )u 2
                      u                                                                            

(17)

 Subject to

 Au p=                                                                   (18)

Approach 6:
 min(|| || )u 1
                     u                                                                             

(19)

 Subject to (18).

Approach 7:
 min(|| || )u ∞
                    u                                                                             

(20)

 
 Subject to (18).

2.5 Applications to medical imaging

One application of the proposed method is in limited 
angle tomography, where the Radon transform is only 
available in an angular range smaller than 180o. According 
to the central slice theorem, in the two-dimensional (2D) 
Fourier domain, two angular sections are measured, and 
two remaining angular sections are not, as illustrated in 
Figure1.

Figure 1: Illustration of a 2D Fourier space when the angular sampling is 
less than 180o. The shaded regions are measured, while the unshaded 
regions are not measured. In theory, one can use analytic continuation to 
estimate the data in the unmeasured regions.

The measured Fourier components are in the shaded 
regions. In theory, it is possible to complete the unmeasured 
Fourier components by line-by-line (which can be row-by-
row, or column-by-column) analytic continuation. One 
analytic continuation method is suggested in Section 2.4.
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Another application of the proposed method is in fast 
MRI, where the k-space is not completely measured. 
The unmeasured k-space data can be estimated from 
measured data. If this analytic continuation technology 
works, MRI procedures can be sped up significantly.

3 Results

The first computer simulation considered a 1D function f(x) 
that was composed of two boxcars. The Fourier transform 
of a boxcar function is a sinc function. Therefore, the 
closed-form of F(ω) in this case was known. It was assumed 
that 64 uniform discrete samples of F(ω) were sufficient to 
represent the function.

We measured the first 16 frequency components and 
measured additional 135 components within the measured 
range. The condition number of ATA was 6.0325×1017. The 
strategy of the proposed method is to over-sample the 
region where data is available. However, when we used 
additional 1350 components (instead of 135 components) 
within the measured range, the condition number of ATA 
worsened to 3.4168×1018.

The following parameters were used for this simulation:
Approach 1: tol = 10-14. Approach 2: α = 10-9. Approach 3: α 
= 10-8. Approach 4: α = 0.

The second simulation was with a Shepp-Logan phantom, 
for which we did not have a closed-form expression for 
its Fourier transform. To work around this problem, we 
first used a computer simulated digitized Shepp-Logan 
phantom in a 256×256 array that was column-by-column 
zero-padded so that each column had 2560 pixels. After 
taking 2560-point 1D DFT, we obtained an over-sampled 
Fourier spectrum. Among these 2560 samples, we chose 
the first 100 samples as our measurements. These low 
frequency 100 components were used to estimate the 
unmeasured frequency components using the method 
proposed in Section 2.4.

The DFT assumes discrete and periodic f(x), as well as 
discrete and periodic F(ω). The actual F(ω) is aperiodic, 
because the actual f(x) is continuous. The errors introduced 
by discretization of f(x) can be reduced by using smaller 
sampling intervals. For example, using an array size of 
1024×1024 or 2048×2048 to represent the Shepp-Logan 
phantom.

Figure 2 shows the Fourier domain signals and their 
associated inverse DFT reconstructions. All computer 
simulation results for the simulations are shown in Figures 
3 and 4.

Figure 2: Fourier domain signal F(ω) (in the upper row) and its reconstruction (x) (in the lower row), up to 64 samples and up to 15 samples, respectively.
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Figure 3: Results for the first simulation. Estimated Fourier components F(ω) and their reconstructions (x) using the proposed 7 approaches.

                                                            Measured                                                      Estimated                                                           True

Figure 4: (a) Reconstructed result from measured data, (b) Reconstructed result for the second simulation, using approach #1, (c) The true phantom.
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In the first simulation, it was assumed that 64 samples were 
good enough to represent the original signal. Frequency 
components were available only lower than sample #15. 
Table 1 lists the mean-squared-error between the spatial-
domain curve (on the right of Figure 3) from the estimated 
Fourier components and the spatial-domain curve (at 
the lower left of Figure 2) from the measured Fourier 
components, using all 7 estimation methods.

Table 1 Analysis of mean squared errors for the methods in Figure 3.

Approach index Mean squared error

1 6.9685 × 10-5

2 9.1850 × 10-5

3 9.3186 × 10-5

4 8.7488 × 10-5

5 1.1212 × 10-4

6 1.0765 × 10-4

7 9.6667 × 10-5

In the second simulation, frequency components lower 
than #10 were available. Three images are shown in Figure 
4. The left figure is the reconstructed image from measured 
data, where the frequency components are in the very low 
frequency range. The middle figure is the reconstructed 
image for the estimated data, using approach #1. Some 
higher frequency components are recovered by the data 
extension algorithm. The right figure is the true phantom. 
The mean-squared-error between the Left image and 
the Right image is 1413, while the mean-squared-error 
between the Left image and the Right image is 847. The 
error reduction is approximately 40%.

4 Discussion

This paper concerns about data completeness in medical 
imaging. Since the patient body has a finite support, its 
Fourier transform is holomorphic. A holomorphic function 
can be uniquely determined by its values in a small 
region.

In MRI, this theory suggests that if the k-space is 
continuously ‘sampled’ without any noise in a very small 
region, for example, close to the center of the k-space, 
then the entire k-space can be uniquely estimated.

In CT, this theory suggests that if the projection data is 
continuously 'sampled' without any noise when the x-ray 
tube continuously rotates in a very small arc, then the 
entire 360° projections can be uniquely estimated.

Analytic continuation is a powerful tool in mathematics 
to determine the values of an entire function in a wider 
region. This paper has developed an analytic continuation 
method by over-sampling the ‘known’ region and solving 
a system of linear equations. The system turns out to be 
seriously ill-posed. Our computer simulations cannot 
obtain exact estimation even though no noise is added 
to the measurements. The computer rounding errors are 

already too large to handle. Seven approaches have been 
tested. It is interesting to notice that Approach #4 with the 
infinity norm allows α = 0, while Approaches #1-#3 with 
L1 or L2 norms require some regularization. The L1 norm 
forgives outliers, the L2 norm manages the error energy, 
and the L∞ norm controls the maximum error.

Our results do not imply that the analytic continuation is 
useless in the real world. Our simulations used sampled 
data. The analytic continuation requires ‘continuous’ data, 
which is difficult to implement with today’s computers. It 
is still an open problem whether analytic continuation is 
helpful if ‘continuous’ and ‘rounding error free’ computers 
are available. We believe that denoising must be performed 
prior to analytic continuation.

Conclusion

In theory, the Fourier domain data are smooth and 
uniquely determined by measurements in a small Fourier 
region. Unfortunately, this theory has not shown any 
impact in practice due to the ill-condition of its nature. We 
do not have effective constraints in the Fourier domain 
to regularize the estimation problem. On the other hand, 
some constraints are effective in the image domain such as 
total variation constraint and minimum energy constraint. 
As a result, the image domain estimation may seem more 
effective.
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