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Abstract

Low-dose computed tomography (CT) can produce noisy images that may contain streaking artifacts. Removal of streaking artifacts normally 
requires iterative algorithms that model the transmission noise physics. A fast filtered backprojection (FBP) algorithm is introduced in this 
short paper. This algorithm is very simple and effective in removing the streaking artifacts in low-dose CT.
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Introduction

X-ray computed tomography (CT) has been around for 
more than 45 years [1]. Mainly due to the popularity of 
the CT scans, Americans’ radiation exposure has risen six-
fold in the past 35 years, according to a National Council 
on Radiation Protection and Measurement report [2]. The 
increased use of CT scans stems largely from screening 
CT of the lung in smokers, virtual colonoscopy, CT cardiac 
screening, CT-based attenuation correction for positron 
emission tomography (PET)/CT imaging, whole-body CT in 
asymptomatic patients [3, 4], and CT imaging of children 
[5]. Shortening of the scanning time to around one second, 
which eliminates the strict need for the subject to remain 
still or be sedated, is one of the main reasons for the large 
increase in the pediatric population. CT scans of children 
have been estimated to produce non-negligible increases 
in the probability of lifetime cancer mortality, leading to 
calls for the use of reduced current settings for CT scans of 
children. For these reasons, the CT industry has put in a lot 
of effort to develop low-dose CT. One active area of research 
is into methods to reduce the radiation counts by applying 
adaptive collimation to block unnecessary x-ray photons. 
Another active area of research is into development of 
more robust image reconstruction algorithms that are less 
sensitive to noise in low-count data. This paper is focused 
on the second approach — developing a fast, robust 
reconstruction algorithm.

Reducing dose causes more noise in the CT image. 
Sometimes, streaking artifacts appear in the low-dose CT 
images as well. Many research groups have shown that 
iterative image reconstruction algorithms can be used 
to generate less-noisy images than the analytical filtered 
backprojection (FBP) algorithm with the same data set [6-9]. 

The FBP algorithms are still useful if the noisy projections 
are pre-filtered in low-dose CT applications [10-12].

In addition to analytic algorithms and iterative algorithms, 
most recently the deep learning-based CT image 
reconstruction methods has been dominating the journals 
and conferences [13-18]. The deep learning-based methods 
are able to reduce the noise for low-dose CT images. Duke 
research group did some comparison studies between the 
FBP, the iterative algorithms, and GE’s TrueFidelityTM deep 
learning-based image reconstruction algorithm [13-15] and 
found the following: The deep learning-based method has 
similar performance to iterative reconstruction methods in 
the sense that they demonstrate a locally heterogeneous 
spatial distribution of noise and reduced low-contrast 
spatial resolution.

We recently derived some effective FBP algorithms for 
low-dose CT [19-21]. Our main idea was to use spatially 
variant linear filter to suppress noise in the projections 
(i.e., sinogram). In other words, different linear filterers 
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were used for different projections. In reference [19], 
the filters were in the frequency-domain. Ten filters 
were designed and applied to the sinogram, resulting in 
ten versions of the filtered sinograms. Then a combined 
version was formed according to the noise model. This 
combined version was used in an FBP algorithm for image 
reconstruction. In reference [20], attempts were made to 
convert the frequency-domain filter’s transfer function into 
the spatial-domain convolution kernel. Approximations 
were used in kernel calculation. As a result, the spatially 
variant filter could be implemented in the spatial-domain, 
without using the Fourier transform. In reference [21], the 
filters were spatial-domain Gaussian two-dimensional (2D) 
filters, which were spatially variant.

The current paper suggests a simple one-dimensional (1D) 
filter for noise control. This filter will be described in the 
methods section. Clinical image results are presented, and 
the effectiveness of the proposed filter is demonstrated in 
the results section.

Methods

The theoretical background was previously established in 
[19] based on minimization of a weighted least-squared 
objective function, and the weighting function was 
determined by the noise variance. Minimization of this 
weighted least-squared objective function led to a spatially 
variant low-pass filter. The frequency-domain transfer 
function of this low-pass filter was

 

where ω was the frequency in radians, α was a parameter 
emulating the step-size of an iterative algorithm, k was a 
parameter emulating the iteration number of an iterative 
algorithm, and w is the noise-variance dependent weighting 
factor. This low-pass filter in [19] continuously varied with 
the projection noise variance.

Here is how the filter in [19] can be quantized and 
simplified in this paper. When noise is small, αw/|ω| is 
large and H(ω) is almost an all-pass filter. In other words, 
no filter is required. When noise is large, αw/|ω| is small 
and H(ω) is a narrow-band low-pass filter. The low-pass 
filter is not unique. In this paper, we simplify this narrow-
band low-pass filter by eliminating the parameters α and 
k. The simple boxcar filter is chosen in this paper for this 
narrow-band low-pass filter. The boxcar filter is essentially 
the n-point average filter. The frequency-domain transfer 
function of this boxcar filter is a sinc function and the 
bandwidth of the filter is determined by the parameter n. 
A larger n corresponds to a narrower bandwidth.

The novelty and significance of the proposed method can 
be recognized by the fact that the projection ray dependent 
denoising is normally achieved by using an iterative 
algorithm, which properly weights each projection ray with 
a weighting function. An iterative algorithm is much less 
computationally efficient than an analytic algorithm. There 
are many analytic algorithms, some are more efficient than 
others. To the author’s knowledge, the proposed algorithm 

is the most efficient image reconstruction algorithm with 
nonstationary denoising.

In x-ray CT imaging, a transmission noise model is assumed, 
and the noise variance is an exponential function of the 
ray sum, which is also referred to as line integral, Radon 
transform, or projection [22]. A larger ray sum is corrupted 
with larger noise. For human torso low-dose x-ray CT 
imaging, the ray sums from shoulder to shoulder have the 
largest values, compared with ray sums in other directions 
(Figure 1). The x-rays passing through both shoulders 
or both arms have the largest attenuation. Thus, the 
projections measured at the views seeing both shoulders 
or both arms are the noisiest. The ray sum values get even 
larger if they pass through the bones.

Figure 1 The x-rays passing through both shoulders or both arms have the 
largest attenuation and thus largest noise.

In the FBP algorithm, a ramp filter is applied to the 
projections before backprojection. The ramp filter is a high-
pass filter, and it amplifies the noise in the projections. The 
backprojection procedure then propagates the data and 
noise into the image domain. The significant noise from the 
worst views is amplified by the ramp filter and propagates 
into the image as streaking lines (Figure 2).

Figure 2 A CT image that suffers streaking line artifacts from arm to arm.

This paper proposes a simple fast filtering scheme to 
remove the streaking artifacts. The philosophy behind 
the proposed filtering scheme is as follows. For those 
projections that do not introduce streaking artifacts, no 
filtering is required. For those projections that introduce 
streaking artifacts, we use a fastest and simplest way to 
denoise. A simple way to separate these two groups of 
data is to use a threshold value, T, which is determined by 
experience. It is convenient to denote T as the percentage 
of the maximum projection value. The simplest lowpass 
filter is an n-point average, which is defined as the sum of 
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n points in the neighborhood (including itself) divided by n. 
The neighborhood size n is another parameter determined 
by experience.

The proposed filtering scheme consists of the following 
steps:

Step 1: Read in projections and find their maximum value. 
Select a threshold value, T, based on the maximum value. 
Select an odd integer n.

Step 2: Loop through all projections
If projection < T
new_projection = projection
else
new_projection = 1D n-point average of projections
end if

Step 3: FBP reconstruction using new_projections.

In the results section of this paper, the effectiveness of the 
proposed algorithm is evaluated using the Sum Square 
Difference (SSD), which is defined as

 
where IL is the image reconstructed using the low-dose 
data and IH is the image reconstructed using the regular-
dose data. The regular-dose image is treated as the gold 
standard.

The reconstructed images are also compared using the 
noise power spectrum image, which is the magnitude 
image of the 2D Fourier transform of the difference image 
of IL - IH. If everything is perfect, this Fourier-domain image 
is a constant zero. This Fourier-domain image is able 
to catch the artifacts in the associated spatial-domain 

image. For example, if the spatial-domain artifacts are the 
horizontal streaks, they are indicated by bright values long 
the vertical direction in the Fourier spectrum image.

In this paper, the proposed algorithm is compared with 
two algorithms: the conventional FBP algorithm and an 
iterative algorithm that models the CT noise and enforces 
the image non-negativity [23]. The conventional FBP 
algorithm is unable to remove the streaking artifacts. The 
iterative algorithm can significantly reduce the artifacts, 
while the spatial resolution is degraded slightly.

Results

In this section, a clinical cadaver torso is used to test 
our proposed algorithm. A diagnostic scanner (Aquilion 
ONETM, Toshiba America Medical Systems, Tustin, CA, USA) 
was used to scan the object (raw data courtesy of Leiden 
University Medical Center). The scanner used a cone-beam 
imaging geometry with a fan angle of was 49.2o. The X-ray 
tube rotated around the object in a circle of a radius of 
600 mm, 1200 views uniformly sampled over 360o. The 
detector of the machine had 320 rows. Each detection row 
consisted of 896 channels. The row-height was 0.5 mm. 
The tube voltage was set at 120 kV. The current was set at 
500 mAs for the full-dose mode and the current was set 
at 60 mAs for the low-dose mode. Each cone-beam image 
volume contained 320 slices. We present results of 3 slices 
in this section.

For the comparison purposes, the regular-dose (instead of 
low-dose) projections were used to generate 3 artifact-free 
images, and the 3 artifact-free reconstructed images are 
shown in Figures 3 as gold standards. These 3 images were 
reconstructed by the conventional FBP algorithm.

Figure 3 (a) Slice #1 of the regular-dose FBP image. This is the gold standard. (b) Slice #32 of the regular-dose FBP image. This is the gold standard. (c) Slice 
#64 of the regular-dose FBP image. This is the gold standard.

(a) (b) (c)

The conventional FBP reconstructions of the same 3 
slices, using the low-dose data, are shown in Figures 4. 
The horizontal streaking artifacts are clearly seen in these 
images between the two arms. Figure 5 show the FBP 
reconstructions of the same 3 slices, using the low-dose 
data and the proposed denoising algorithm. By comparing 
Figures 5 with Figures 4, it is clear that the streaking artifacts 
are successfully removed by the proposed algorithm. The 
numerical results using the SSD distance are shown in 
Table 1.

The reconstructed images with 200 iterations of the  
iterative algorithm using the low-dose data are shown 

in Figures 5. The iterative algorithm models the x-ray CT 
transmission noise and enforces the image non-negativity. 
Even though the streaking artifacts are significantly 
suppressed, the image spatial resolution is somewhat 
compromised. The numerical results using the SSD distance 
are also shown in Table 1. The reconstructed images with 
200 iterations of the iterative algorithm using the low-dose 
data are shown in Figure 6. The iterative algorithm models 
the x-ray CT transmission noise and enforces the image 
non-negativity. Even though the streaking artifacts are 
significantly suppressed, the image spatial resolution is 
somewhat compromised. The numerical results using the 
SSD distance are also shown in Table 1.
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Figure 4 (a) Slice #1 of the low-dose FBP image. This image contains severe streaking artifacts. (b) Slice #32 of the low-dose FBP image. This image contains 
severe streaking artifacts. (c) Slice #64 of the low-dose FBP image. This image contains severe streaking artifacts.

Figure 5 (a) Slice #1 of the low-dose FBP image, using proposed fast denoising filter. The streaking artifacts are removed. (b) Slice #32 of the low-dose FBP 
image, using proposed fast denoising filter. The streaking artifacts are removed. (c) Slice #64 of the low-dose FBP image, using proposed fast denoising filter. 
The streaking artifacts are removed.

(a)

(a)

(b)

(b)

(c)

(c)

In the implementation of the proposed algorithm, the 
threshold T was set at the 60% of the maximum projection 
value. The parameter n was set as 13. A representative 
histogram of the projection sinogram is shown in Figure 7. 
In this histogram, 98.44% of the total projections are below 
the threshold of 60%; only 1.56% of the total projections 
are above the threshold of 60%. This fact can be visualized 
by the projection images (also known as the sinograms) 
shown in Figure 8. The sinogram difference between 
before and after pre-filtering only happens to the 1.56% 
brightest sinogram values. The 98.44% of the sinograms 
are not affected. The computation overhead beyond the 
conventional BFP algorithm is negligible. Also, much of 
the computation time in the FBP algorithm is spent on 
the backprojection procedure. The total computation 

time of the proposed algorithm is almost the same as the 
computation time of the conventional FBP algorithm.

Table 1 Sum square distance (SSD) between the low-dose image and the 
regular-dose image.

Image 
slice 

number

SSD value of the 
conventional FBP 

reconstruction

SSD value of the 
proposed FBP 
reconstruction

SSD value of 
the iterative 

reconstruction

#1 0.0189 0.0146 0.1097

#32 0.0065 0.0053 0.1208

#64 0.0094 0.0048 0.1418

Figure 6 (a) Slice #1 of the low-dose iterative reconstruction, using 200 iterations of the iterative transmission algorithm with noise weighting. The streaking 
artifacts are significantly reduced. (b) Slice #32 of the low-dose iterative reconstruction, using 200 iterations of the iterative transmission algorithm with 
noise weighting. The streaking artifacts are significantly reduced. (c) Slice #64 of the low-dose iterative reconstruction, using 200 iterations of the iterative 
transmission algorithm with noise weighting. The streaking artifacts are significantly reduced.

The effectiveness of the proposed algorithm can also be 
indicated by the noise power spectrum images shown in 

Figure 9. The horizontal streaking artifacts in the spatial 
images are represented by the central vertical bright 

(a) (b) (c)

Zeng GL, J Radiol Imaging. 2020, 4(7):45-50



49

Figure 7 A histogram of the projection sinogram. The value ‘1’ in the 
horizontal axis indicates the maximum value of the projections in the 
sinogram.

Figure 8 (a) Raw projections for slice #32 before processing. (b) Processed 
projections for slice #32 using proposed algorithm.

Figure 9 Noise power spectra for slice #32. (a) Conventional FBP reconstruction. (b) Proposed pre-filter method. (c) Iterative reconstruction.

regions, which can be visualized in the noise power 
spectrum image associated with the conventional FBP 
algorithm, but not in the other two spectrum images.

Discussion

One may have a concern that noise suppression by the 
application of a low-pass filter may blur or remove the 
lesions, which are important in clinical diagnosis. This 

concern is valid for the common spatially invariant low-
pass filter. If a spatially invariant low-pass filter is applied 
to a sinogram, all projections will be blurred. As a result, 
the lesions will be blurred.

On the other hand, the proposed denoising method is 
spatially variant. A lesion is measured in all views. In the 
proposed algorithm, the lesion projections are not filtered 
in most projections. The low-pass filter is used only at a 
small number of projections, where the noise is the largest. 
The proposed method reduces the impact of the low-pass 
filter to its minimum. The performance of the proposed 
algorithm is demonstrated by the 3 reconstructed slices 
of real CT scans. Using a cadaver makes it possible to have 
a gold standard (with a regular x-ray dose) to compare 
the low-dose images. It is clearly observed that the small 
objects or shapes are well kept and the sharpness of the 
edges are unaffected with the proposed spatially variant 
technique. A spatially invariant denoising filter would blur 
the entire image (not shown).

Conclusions

The main motivation of developing the proposed filter is 
the computational efficiency. The total computation time 
of the proposed FBP algorithm is almost the same as the 
conventional FBP algorithm. In the proposed algorithm, 
no action is required if the ray sum value is smaller than 
a threshold, T, which is selected by trial-and-error. These 
data are approximately 98% of the total projections. The 
purpose of this threshold value T is to identify the ray 
sums that may cause the streaking artifacts in the image. 
Only the relatively large ray sums can contribute to the 
streaking artifacts.

When the ray sum is greater than the threshold value T, a 
simplest 1D lowpass filter is used to smooth the sinogram. 
The simplest lowpass filter is the n-point average filter, 
which sums n samples and divides the sum by n. This 
value n is an odd integer, determined by trail-and-error as 
well. Fortunately, the filter performance is not sensitive to 

(a) (b) (c)

(a) (b)
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parameters T and n. For example, after changing n = 13 to 
n =15, the SSD for slice #1 using the proposed algorithm 
changes from SSD = 0.0146 to SSD = 0.0145. One cannot 
visually tell the differences between the image using n = 
13 and the image using n =15. If we change the threshold 
from 60% of the maximum projection value to 65%, the 
SSD improves to SSD = 0.0130 for slice #1 with n = 15. The 
proposed algorithm is thus found to be fairly robust and 
not sensitive to the scanning target. The rule of thumb to 
select the parameter T is that only a very small percentage 
of the sinogram values are selected to be filtered. This 
task can be achieved by evaluating the histogram of the 
sinogram. The selection of the parameter n is not critical, 
as along as the parameter n is large enough, almost the 
same resultant is obtained.

Our proposed algorithm does not need a complicated 
mathematical noise model. No Bayesian constraints are 
required. The algorithm is non-iterative. We believe that 
our algorithm is a cost-effective tool to combat the artifacts 
due to the data starvation nature of low-dose CT.
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