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Abstract

Magnetic resonance imaging (MRI) using under-sampled k-space data is a common method to shorten the imaging time. Iterative Bayesian 
algorithms are usually used for its image reconstruction. This paper compares an iterative Bayesian image reconstruction method that 
uses both spatial and temporal constraints and a non-iterative reconstruction algorithm that does not use temporal constraints. Three 
patient studies are performed. It is interesting to notice that the images reconstructed by the iterative Bayesian algorithm may introduce 
more bias than the non-iterative algorithm, even though the images provided by the iterative Bayesian algorithm look less noisy. The bias 
can be reduced by decreasing the influence of the temporal constraints.
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Introduction

Real-time or dynamic imaging in magnetic resonance 
imaging (MRI) require fast data acquisition, and the 
k-space data acquired is incomplete [1, 2]. When the 
data is incomplete, the conventional analytical image 
reconstruction methods usually produce severe aliasing 
artifacts. Using under-sampled data to reconstruct an 
image is sometimes referred to as a compressed sensing 
problem, which is commonly solved by constrained 
optimization. Iterative algorithms with constraints are 
able to produce images with less severe artifacts and with 
higher signal-to-noise ratios [3-8]. The iterative methods 
in image reconstruction commonly have an objective 
function that contains spatial and/or temporal constraints. 
For example, if the image is sparse, the sparseness can be 
enforced by using the L0 norm or L1 norm constraints. If the 
image is piecewise constant, the total variation (TV) norm 
constraint can be used. In MRI, if the k-space is scanned 
using a non-Cartesian sampling scheme, it is popular to 
first interpolate the non-Cartesian k-space measurements 
into the Cartesian grid before reconstruction [9-11].

Nowadays deep learning methods are popular in almost 
all areas of this modern world and they are well accepted 
in MRI image reconstruction and denoising [12-15]. Deep 
learning methods extract features from the training data, 
and their performance is training data dependent. It is not 
clear whether the selection of the training data affects the 
image bias, if the k-space data is incomplete and the image 
is reconstructed by a neural network.

Parallel imaging using multiple receiver coils in MRI is 
another way to achieve fast data acquisition [16-18]. Each 
coil can measure a different region in the k-space. The 
combined data from all coils is equivalent to a complete 
data set. This paper’s focus is on incomplete data image 
reconstruction. Therefore, the patient studies in this paper 
only use the (incomplete) sparse-data obtained from only 
one coil.

For image reconstruction with an incomplete data set, 
some a priori information is enforced to supplement 
the missing data. As a priori information, for example, 
one could assume that the image changes slowly in time 
and the image is piecewise constant. Bayesian image 
reconstruction methods in general present images with 
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higher signal-to-noise ratios than the methods that do not 
use prior information.

There is one concern for all Bayesian methods. What 
happens if the a priori information is wrong? The Bayesian 
methods may thus cause bias. This paper compares an 
iterative Bayesian algorithm [19] and a non-iterative non-
Bayesian algorithm [20] in terms of image bias using some 
MRI patient studies.

Methods

Iterative algorithm with spatio-temporal constraints
In this paper, we consider sparse radial k-space sampling 
in MRI, in which the number of views is not sufficient. The 
sparse-view data may cause streaking aliasing artifacts in 
the reconstructed images. Two algorithms are compared 
in this paper in terms of their performance for sparse-view 
MRI.

The iterative Bayesian algorithm used in the comparison 
studies here was taken from reference [19] and is briefly 
outlined as follows. The aim of the iterative algorithm is 
to minimize an objective function that consists of one 
data fidelity term and two Bayesian terms. The objective 
function, Ct, can be expressed as

  
(1)

where m is the spatial domain image, F is the two-
dimensional (2D) Fourier transform, W is the masking 
matrix depending on the k-space sampling scheme, N is 
the total number of image pixels, and ε is a small positive 
constant. The mathematical symbols x, y, t are the 
gradients in the x, y, the time (t) directions, respectively. 
The image is represented in the x-y Cartesian coordinate 
system. In the right-hand-side of Eq. (1), the first two terms 
use the L2 norm, while the third term uses the total variation 
(TV) norm. The control parameters α1 and α2 determine the 
balance among these three norms in the objective function 
(or cost function). In our implementation, α1 = 0.04, α2 = 
0.006, ε = 0.00000001; these parameters were suggested 
in reference [19]. An iterative gradient descent algorithm 
is used to optimize the objective function, Ct, as defined in 
Eq. (1). The number of iterations is chosen to be 1000 as 
suggested in reference [19].

In this iterative algorithm, the sparse radial k-space 
measurements are first interpolated into a Cartesian grid, 
d. For a 2D image array m, d is a 2D complex matrix in the 
k-space. Since the k-space measurements are sparse, the 
majority of the elements in d is zero. Matrix W in Eq. (1) is 
a binary masking 2D matrix, with the same size as matrix 
d. The element of W is 1 if the corresponding element in d 
is measured. The element of W is 0 if the corresponding 
element in d is not measured. In Eq. (1), Fm denotes the 
2D Fourier transform of the 2D image m. The notation 
WFm represents the element-by-element multiplication 
between the mask matrix W and the 2D Fourier transform, 
Fm, of the image m.

The image m reconstructed by this iterative algorithm is 
complex, which consists of a real part mreal and an imaginary 

part mimaginary. The last step in the image reconstruction 
algorithm is to convert the two 2D image arrays to the 
norm image on the element-by-element base. In other 
words, the final image is obtained as

                               
(2)

Non-iterative algorithms without temporal constraint
The non-iterative algorithm used in our comparison 
studies is taken from reference [20] with a modification. 
This non-iterative algorithm does not use any constraints 
in the temporal direction. In other words, the images at 
different time frames are assumed to be independent. 
The main idea of this non-iterative algorithm is first to 
extend the sparse-view k-space measurements to more 
synthetic views in order to reduce the under-sampling 
aliasing artifacts and then to reconstruct the image with 
an analytical filtered backprojection (FBP) algorithm. The 
FBP algorithm is the most popular image reconstruction 
algorithm in computed tomography (CT).

Since the k-space data is complex, we process the real part 
and the imaginary part separately and obtain two images: 
the real part and the imaginary part. The final image is 
the norm image by combining the real-part image and 
the imaginary-image as indicated by Eq. (2). This is only 
aspect that this algorithm differs from the one developed 
in reference [20], where the complex k-space data was first 
converted into norm data by combining the real part and 
imaginary part. We believe that it is more proper to construct 
the real-part image and imaginary-part image first and then 
to form the norm image by combining these two images 
as the final step. The current method is mathematically 
equivalent to use the complex measurements directly for 
image reconstruction and convert the complex image to a 
norm image at the end.

The outline of the non-iterative algorithm is described 
as follows. Instead of interpolating the radial k-space 
measurements into a Cartesian grid, data on some 
unmeasured radial k-space lines is estimated by the 
deformation method. The deformation method is 
illustrated in Figure 1, where the two solid lines represent 
the locations where the measurements are available, and 
the two broken lines represent the locations where the 
measurements are not available and to be estimated. The 
values on line L1 are deformed to obtain the values on 
line L4, as indicated by the blue arrows in Figure 1, in the 
sense that for every value on L1 there is a corresponding 
close value on L4. The red dot on L1 and the red dot on L4 
illustrate the corresponding values. Those blue arrows in 
Figure 1 form a deformation field. The name ‘deformation’ 
implies that L4 can be thought of being deformed from L1. 
The deformation method is to assign the ‘red dot’ value to 
lines L2 and L3 at the intersections with the deformation 
vector (i.e., the blue arrow). The deformation field (i.e., 
the blue arrows) can be estimated using a non-iterative 
algorithm. For more details of this deformation method, 
please consult reference [20].

In this paper, the sparse MRI data contains 24 k-space radial 
lines. The extended MRI data contains 72 k-space lines. 
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Figure 1 The values on line L1 are deformed on line L4 as indicated by the 
blue arrows.

Between every pair of measured lines, measurements on 
two new lines are estimated, as shown in Figure 1.

After the extended radial measurements are obtained, an 
analytic FBP is carried out as following steps for real part 
and imaginary part of the data separately:

Step1: Line-by-line filter the k-space measurements by a 
1D transfer function

                                                                      
(3)

where |ω| is the absolute value of the frequency, that is, 
the distance to the center of the k-space. The parameter 
β determines the level of regularization, as suggested by 
reference [21].

Step 2: Line-by-line take the 1D inverse Fourier transform.

Step 3: Perform backprojection.

Two images are obtained by application of the above 
three steps to the real-part and imaginary-part of the 
measurements. The final image is the norm image by 
combining these two images according to Eq. (2).

The transfer function (3) is a regularized version of the 
original ramp filter

                                                                       (4)

as suggested by reference [21], aiming to find a minimum 
norm solution. This non-iterative algorithm can have 
multiple versions. Some of the versions are used in this 
paper for comparison studies:

Version 1: As described above, the input data for ‘Step 1’ 
is the extended 72-view measurements. The extended 
72-view measurements are obtained by the deformation 
method from the 24-view raw measurements.

Version 2: The input data for ‘Step 1’ is the 24-view raw 
measurements. The three steps are the same as presented 
above.

Version 3: This version is almost the same as Version 2, 
except that the filter transfer function for ‘Step 1’ is the 
ramp filter given by Eq. (4), instead of the one in Eq. (3).

Version 4: This version is almost the same as Version 
3, except that the input data for ‘Step 1’ is the 72-view 
‘complete’ raw measurements. Note that these 72-
vew measurements are directly acquired from the MRI 
scanner; they are not extended measurements from the 
24-view raw measurements. The final image from Version 
4 is treated as the gold standard for the results from other 
methods to compare.

MRI patient data
Actual patient cardiac perfusion MRI data is used in this 
paper for comparison studies. All studies were approved 
by our Institutional Review Board (IRB). All participating 
patients were properly consented. Patient identifiable 
information was removed before transferring to our 
research computers for processing.

Data acquisition was performed using a Siemens 3T Trio 
scanner. A phased array of multiple of coils was used during 
data acquisition; however, data from only one selected coil 
was used in image reconstruction. The scanner parameters 
for the radial acquisition were TR = 2.6 ms, TE = 1.1 ms, flip 
angle = 12o, Gd dose = 0.03 mmol/kg, and slice thickness = 
6 mm. Reconstruction pixel size was 1.8 × 1.8 mm2. Each 
image was acquired in a 62 ms readout. The acquisition 
matrix size for an image frame was 256 × 72, and 75 
sequential images were obtained at 75 different times. At 
each time frame, the k-space is sampled with 72 uniformly 
spaced radial lines over an angular range of 180o.

For the comparison purposes of this paper, at each time 
frame we uniformly under-sampled the 72 views into 24 
views and call such obtained data as 24-view raw data. The 
FBP reconstructed images with 72 views were treated as 
the gold standard. The image discrepancy between the gold 
standard and other images are evaluated in terms of root-
mean-square-error (RMSE). A median filter is applied to all 
images before the RMSEs were measured and displayed.

Results

Results are shown in Figures 2, 3 and 4, for patient 1, 
patient 2 and patient 3, respectively. For each patient, 
there are 5 sets of reconstructed images by the iterative 
Bayesian reconstruction algorithm and by the 3 versions 
of the non-iterative reconstruction methodology. Each set 
consists of 75 sequential images. There would be too many 
images to show if all images were displayed. To make the 
paper more readable, 4 (instead of 75) images are shown 
for each set. Table 1 lists the root-mean-square-errors 
(RMSEs) of images deviate from the gold standard.

It is clear from Table 1 to observe that directly using the 24-
view raw data gives the worst performance. The iterative 
algorithm and the non-iterative algorithm have similar 
performance, with the non-iterative algorithm’s results 
being slightly better.

All these algorithms have some parameters to adjust. It 
is interesting to observe that when the parameter α1 in 
the objective function (1) is reduced from 0.04 to 0.004, 
the RMSE is reduced. We conjecture that the RMSE for 
the iterative algorithm is caused by the bias. Reducing 
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the influence of the temporal constraint in the objective 
function (1) reduces the bias. A Bayesian constraint can 
help the image look better, but at the same time, the 
Bayesian constraint can change the image value.

For the non-iterative algorithm, a regularization factor 
β|ω| is introduced to encourage a minimum norm 
solution. When β = 0, there is no regularization. When β 
is large, the regularization is heavily enforced. In Figures 
5~7 and in Table 2, some other cases are shown. One 
case is the iterative reconstruction with a smaller α1 = 
0.004. Another case is the non-iterative reconstruction 
with heavier regularization using β = 2. The third case is 
the non-iterative reconstruction with β = 1 and with 24-
view raw data, where the 24 views are not extended to 72 
views.

From Figures 5~7 and Table 2, we observe the following: For 
the iterative algorithm, reducing the temporal constraint 
helps reducing the bias. Increasing the regularization in 
the non-iterative algorithm helps to reduce the noise. If the 
24-view data is not extended to 72-data, the regularization 
helps denoising, but extension to 72-view data can further 
reduce some artifacts.

The structural similarity index measure (SSIM) is another 
well accepted figure-of-merit to find the similarity of two 
images; the definition details of SSIM are given in [22]. 
The counterparts of Tables 1 and 2 are Tables 3 and 4, 
respectively. The results of Tables 3 and 4 are consistent 
with those in Tables 1 and 2, indicating the superiority of 
the proposed non-iterative algorithm. The optimal value 
for RMSE is 0, and the optimal value for SSIM is 1.

Figure 2 Images reconstructed from Patient 1 data. Column 1: Time frame 6, Column 2: Time frame 21, Column 3: Time frame 36, and Column 4: Time frame 
51. Row 1: Gold standard FBP with 72 views (Version 4), Row 2: 24-view raw FBP reconstruction (Version 3), Row 3: 24-view extension to 72-view, then FBP with 
β = 1 (Version 1), and Row 4: iterative Bayesian with α1 = 0.04.

Zeng GL et al., J Radiol Imaging. 2020, 4(5):30-39
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Figure 3 Images reconstructed from Patient 2 data. Column 1: Time frame 6, Column 2: Time frame 21, Column 3: Time frame 36, and Column 4: Time frame 
51. Row 1: Gold standard FBP with 72 views (Version 4), Row 2: 24-view raw FBP reconstruction (Version 3), Row 3: 24-view extension to 72-view, then FBP with 
β = 1 (Version 1), and Row 4: iterative Bayesian with α1 = 0.04.

Table 1 RMSE for various reconstruction methods for three patient studies (using an initial set of parameters). Closer to 0 is better.

72-view non-iterative (gold 
standard)

β = 0

24-view non-iterative
(raw reconstruction)

β = 0

24-view → 72-view, non-iterative, 
without temporal constraint

β = 1

24-view, iterative Bayesian, with 
temporal constraint

α1 = 0.04

Patient 1 0 6.7675 3.6778 4.1719

Patient 2 0 10.957 5.0849 5.3663

Patient 3 0 10.747 4.9476 5.3545

Zeng GL et al., J Radiol Imaging. 2020, 4(5):30-39
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Figure 4 Images reconstructed from Patient 3 data. Column 1: Time frame 6, Column 2: Time frame 21, Column 3: Time frame 36, and Column 4: Time frame 
51. Row 1: Gold standard FBP with 72 views (Version 4), Row 2: 24-view raw FBP reconstruction (Version 3), Row 3: 24-view extension to 72-view, then FBP with 
β = 1 (Version 1), and Row 4: iterative Bayesian with α1 = 0.04.

Zeng GL et al., J Radiol Imaging. 2020, 4(5):30-39

Table 2 RMSE for various reconstruction methods for three patient studies (using another set of parameters). Closer to 0 is better.

72-view non-iterative (gold 
standard)

β = 0

24-view non-iterative
(raw reconstruction)

β = 1

24-view → 72-view, non-iterative, 
without temporal constraint

β = 2

24-view, iterative Bayesian, with 
temporal constraint

α1 = 0.004

Patient 1 0 4.2129 3.4196 3.9046

Patient 2 0 6.4403 4.6963 4.7018

Patient 3 0 6.2731 4.5616 4.6803
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Figure 5 Images reconstructed from Patient 1 data. Column 1: Time frame 6, Column 2: Time frame 21, Column 3: Time frame 36, and Column 4: Time frame 
51. Row 1: Gold standard FBP with 72 views (Version 4), Row 2: 24-view raw FBP reconstruction (Version 2), Row 3: 24-view extension to 72-view, then FBP with 
β = 2 (Version 1), and Row 4: iterative Bayesian with α1 = 0.004.

Table 3 SSIM for various reconstruction methods for three patient studies (using an initial set of parameters). Closer to 1 is better.

72-view non-iterative (gold 
standard)

β = 0

24-view non-iterative
(raw reconstruction)

β = 0

24-view → 72-view, non-iterative, 
without temporal constraint

β = 1

24-view, iterative Bayesian, with 
temporal constraint

α1 = 0.04

Patient 1 1 0.999635875413527 0.999848361889880 0.999807461269317

Patient 2 1 0.999413359233490 0.999804906454934 0.999768375404101

Patient 3 1 0.999421484562476 0.999814647345931 0.999769234887647

Zeng GL et al., J Radiol Imaging. 2020, 4(5):30-39
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Figure 6 Images reconstructed from Patient 2 data. Column 1: Time frame 6, Column 2: Time frame 21, Column 3: Time frame 36, and Column 4: Time frame 
51. Row 1: Gold standard FBP with 72 views (Version 4), Row 2: 24-view raw FBP reconstruction (Version 2), Row 3: 24-view extension to 72-view, then FBP with 
β = 2 (Version 1), and Row 4: iterative Bayesian with α1 = 0.004.

Zeng GL et al., J Radiol Imaging. 2020, 4(5):30-39

Table 4 SSIM for various reconstruction methods for three patient studies (using another set of parameters). Closer to 1 is better.

72-view non-iterative (gold 
standard)

β = 0

24-view non-iterative
(raw reconstruction)

β = 1

24-view → 72-view, non-iterative, 
without temporal constraint

β = 2

24-view, iterative Bayesian, with 
temporal constraint

α1 = 0.004

Patient 1 1 0.999800444659817 0.999849666451081 0.999819971016024

Patient 2 1 0.999697329429499 0.999803495341621 0.999799850215280

Patient 3 1 0.999705810078143 0.999813456704611 0.999801863895034
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Figure 7 Images reconstructed from Patient 3 data. Column 1: Time frame 6, Column 2: Time frame 21, Column 3: Time frame 36, and Column 4: Time frame 
51. Row 1: Gold standard FBP with 72 views (Version 4), Row 2: 24-view raw FBP reconstruction (Version 2), Row 3: 24-view extension to 72-view, then FBP with 
β = 2 (Version 1), and Row 4: iterative Bayesian with α1 = 0.004.

Zeng GL et al., J Radiol Imaging. 2020, 4(5):30-39

Discussion

The iterative algorithm uses the TV norm for regularization 
in the image spatial domain. The TV norm also in favor 
of piecewise constant images and may cause staircase 
artifacts when encouraging sharp edges. On the other 
hand, the non-iterative algorithm uses a lowpass filter 1/
(1+β|ω|) to regularize the image by controlling the noise. 
This lowpass filter was derived by encouraging a minimum 
norm solution [21]. We observe from Table 2 that by 
increasing β value from 1 to 2 the noise is reduced and 
the RMSE is also reduced. However, the SSIM is reduced 
for one patient and increases for the other two patients. 

Therefore, using a lowpass filter alone is not effective in 
reducing the aliasing artifacts caused by under-sampled 
data. The non-iterative deformation method is used to 
estimate some unmeasured data. Comparing Table 1 with 
Table 2 and Table 3 with Table 4, the extension of the 24-
view data to 72-view data actually improves both the RMSE 
and SSIM. In other worlds, Version 1 is better than Version 
2.

We must point out that the extended 72-view data is 
different from the actually measured 72-view data and 
contains estimation errors. Of course, there is no substitute 
for the real data. If the real data is not available, the 
estimated data is the second choice. There are numerous 
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ways to estimate the unmeasured data. The iterative 
algorithm in this paper estimates the missing data from 
the measured data in different time frames adjacent to 
the current time, while the non-iterative algorithm in this 
paper estimates the missing data from the measured data 
at the current time.

Conclusions

In dynamic MRI imaging, time-activity curves are used 
to estimate tissue kinetic parameters, which have wide 
applications in clinical diagnoses. Accurate kinetic 
parameters depend on the unbiased time-activity curves 
that are extracted from dynamic images. The dynamic 
images are reconstructed using sparse k-space data.

Two sparse-data image reconstruction methods are 
compared into this paper: an iterative Bayesian method 
that uses a temporal constraint and a non-iterative method 
that does not have a temporal constraint. According to the 
root-mean-square-error (RMSE) analysis and structural 
similarity index measure (SSIM) analysis, these two 
methods give similar accuracies as shown in Tables 1~4. 
The non-iterative method is much faster than the iterative 
method. In the iterative reconstruction algorithm, the 24-
view sparse-data is intrinsically extended to 72-view data 
by using the temporal constraint as shown in the objective 
function (1). The ‘assisting’ 48-view data is most likely 
different form the actual measured data. The influence of 
the ‘assisting’ 48-view data may bring in image bias. This 
bias is the price we pay to reduce the data under-sampling 
artifacts. After reducing the weighting parameter α1 from 
0.04 to 0.004 in the iterative algorithm, the bias is reduced 
and the RMSE and SSIM are improved.

Our take-home message is that Bayesian constraints 
may make the images look better, but they may cause 
more image bias, deviating from the true solution. We 
must be aware of the tradeoff between looking good and 
accuracy.

Our future research includes investigations of deep learning 
methods for sparse-data MRI, in which the unmeasured 
data is supplemented by training data of other patients. 
The deep learning methods are effective but are not well 
understood, in terms of how the a priori information is 
presented and used. We will focus on whether the deep 
learning methods may introduce image bias when the 
k-space is not fully sampled.
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