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Appendix A 

Primary and scatter dose kernels (H1,2 and K1,2) 

On referring to Figure A1, Iwasaki [5] and Iwasaki and colleagues [6] defined H1,2 and K1,2 

functions used for teletherapy radiation beams as follows: 

H1(, R; EN) and H2(, R; EN) express the forward and backward primary dose components to 

points (, R) and (, R), respectively, in semi-infinite water phantoms. They are produced at the 

corresponding origins (O’s), per unit water collision kerma caused by the incident EN photons and 

per unit volume, setting the incident photon ray line to coincide with the  or  axis. In the same 

way, we let K1(, R; EN) and K2(H, R; EN) be related to the in-water forward and backward scatter 

dose components, respectively. According to the irradiation geometries, we can have H1(0, R; 

EN)=H2(0, R; EN) and K1(0, R; EN)=K2(0, R; EN). 

 

Figure A1  Diagrams showing how (a) the forward 

component (H1 or K1) of the primary and scatter dose 

kernels for point (, R) and (b) the backward component (H2 

or K2) of the primary and scatter dose kernels for point (H, 

R) should be obtained in semi-infinite water phantoms for 

incident photons, where the interaction point is situated at 

point O. 
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Appendix B 

∆𝜙, ∆𝜃 and ∆𝑟′ steps for the polar coordinate system (r’, 𝜙, 𝜃) 

In order numerically to integrate Equations 1−3 for evaluation of the primary, scatter and 

contamination doses at point P(XC, YC, ZC) (Figure 2), we use two other coordinate systems besides 

the beam coordinate system (Xbeam, Ybeam, Zbeam). One is the orthogonal coordinate system (xv, yv, 

zv) with the origin at point P (it should be noted that the (xv, yv, zv) coordinate system just 

coincides with the (Xbeam, Ybeam, Zbeam) coordinate system when point P coincides with the 

isocenter (O)), and the other is the polar coordinate system (r’, 𝜙, 𝜃) derived from the (xv, yv, zv) 

coordinate system. 

 

Here we use a phantom whose surface is convex in shape for simplicity. Using r’,  and , we 

make a quadrangular pyramid whose apex is located at point P V’s) 

(using r’s) in sequence inside the pyramid and a small area (S) at the site of the phantom 

surface. With respect to the r,  and steps, we use the following procedures: 

 

(a) For steps (02), we set j=const (j=1, 2, 3, …). 

(b) For steps (0), we set 

∆𝜃𝑘 = ∆𝜃min +
(∆𝜃max−∆𝜃min)

2
[1 − cos {𝜋 (1 − exp (−

ln 2

𝜃H
𝜃𝑘−1))}],                           (B1) 

 

with k=1, 2, 3, …, where 𝜃H is a constant. Let 𝜃0=0 and 𝜃𝑘=𝜃𝑘−1+𝜃𝑘; then we have 𝜃1=𝜃min 

and 𝜃∞=𝜃max (the step increases slowly at small and large k numbers). 

 

(c) r’ steps (0r) are taken within the phantom as 

∆𝑟𝑖
′ = ∆𝑟min

′ +
(∆𝑟max

′ −∆𝑟min
′ )

2
[1 − cos {𝜋 (1 − exp (−

ln 2

𝑟H
′ 𝑟𝑖−1

′ ))}],                            (B2) 

with i=1, 2, 3, …, where ∆𝑟H
′  is a constant. Let ∆𝑟0

′ =0 and 𝑟𝑖
′ =𝑟𝑖−1

′ +𝑟𝑖
′ ; then we have 
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∆𝑟1
′=𝑟min

′ and 𝑟∞
′ =𝑟max

′  (the step increases slowly at small and large i numbers). Each r’ axis is 

drawn through the centers of  𝜃j and 𝜃𝑘. Within each delta volume (V), we set an effective 

point on the r’-axis. For example, the effective point for the ith V is placed at a distance of 

(𝑟𝑖
′fV𝑟𝑖

′) from point P, where fV is the shifting factor (0fV1), letting it be a constant for any 

set of (i, j, k), depending on the primary or scatter dose calculations. The effective point is 

V with respect to the primary or 

scatter dose kernel (ℎphan or 𝑘phan) and the primary water collision kerma (𝐾water
MLC ) in Equations 

1 and 2. For the ratio of 𝜇phan/𝜇water in Equations 1 and 2, we take the ratio value averaged 

within each V. 

 

For the present 10-MV X-ray dose calculations the following data sets were adopted: For the 

primary and electron contamination dose calculations, we used a data set of fV=0.415, 𝑟min
′ =0.01 

cm, 𝑟max
′ =0.65 cm, 𝑟H

′ =0.406 cm, j=0.0436 rad (=2.5o), ∆𝜃min=0.0175 rad (=1.0o), ∆𝜃max=0.0524 

rad (=3.0o) and 𝜃H=0.2983 rad (=17.09o). For the scatter dose calculations, we used a data set of fV 

=0.01, ∆𝑟min
′ =0.25 cm, ∆𝑟max

′ =2.0 cm, 𝑟H
′ =11.439 cm, j=0.0436 rad (=5.0o), ∆𝜃min=0.0175 rad 

∆𝜃max=0.0698 rad (=4.0o) and 𝜃H=1.0949 rad (=62.73o). It should be noted that the fV 

values were determined by comparison of calculated and measured percentage depth dose 

(PDD) data in water, where the values of fV=0.415 and fV=0.01 were determined mainly for small 

and large fields, respectively. 

 

Appendix C 

Definitions of the off-center jaw-Sc factor, the MLC-Sc factor, the jaw-Sc factor and the off-center MLC-Sc 

factor 

Here we describe other deals using Equation 23, where the calculation point (𝑋0, 𝑌0), the jaw field 

(𝐴jaw) and the MLC field (𝐴MLC) are assessed on the isocenter plane. When the MLC is removed 



 

4 

 

from an open 𝐴MLC field under a given 𝐴jaw field, we should put 𝐴MLC = ∞ and 𝐴MLC
black = 0. Then 

the term in the brackets of the right side of Equation 23 can be rewritten as 

 

𝑆c_center(𝑋0, 𝑌0; 𝐴MLC = ∞, 𝐴jaw) = 𝐻jaw(𝑋0, 𝑌0; 𝐴jaw)/ 𝐻jaw(0,0; 10 × 10iso).                       (C1) 

This factor may be called the “off-center jaw-Sc factor.” 

 

Alternatively, if the in-air beam intensity is normalized at a fixed point (𝑋0, 𝑌0) by using an open 

jaw field of 𝐴jaw = 10 ×  10 cm2 whose center is at the fixed point (𝑋0, 𝑌0), then the collimator 

scatter factor (Sc) at the fixed point (𝑋0, 𝑌0) for an open 𝐴MLC field under a given 𝐴jaw field can 

be formulated as 

𝑆c(𝑋0, 𝑌0; 𝐴MLC, 𝐴jaw) = [𝐻jaw(𝑋0, 𝑌0; 𝐴jaw) − 𝐻MLC
black(𝑋0, 𝑌0; 𝐴MLC

black)]/ 𝐻jaw(𝑋0, 𝑌0; 10 ×  10). )        (C2) 

This factor may be called the “MLC-Sc factor.” 

 

When the MLC is removed from the beam, Equation C2 can be rewritten as 

𝑆c(𝑋0, 𝑌0; 𝐴MLC = ∞, 𝐴jaw) = 𝐻jaw(𝑋0, 𝑌0; 𝐴jaw)/𝐻jaw(𝑋0, 𝑌0; 10 ×  10).                           (C3) 

This factor may be called the “jaw-Sc factor.”  

 

In particular, when normalization is performed at the isocenter, another type of Sc factor can be 

formulated as 

𝑆c_iso(𝑋0, 𝑌0; 𝐴MLC, 𝐴jaw) = [𝐻jaw(𝑋0, 𝑌0; 𝐴jaw) − 𝐻MLC
black(𝑋0, 𝑌0; 𝐴MLC

black)]/ 𝐻jaw(0,0; 10 × 10iso).                  (C4) 

This factor may be called the “off-center MLC-Sc factor.” 

 

Appendix D 

The beam intensity correction factor of CFOPF
a  

This Appendix is described using 10-MV X-ray beams from the present linear accelerator 

equipped with MLC and wedge devices supplied by the manufacturer. The beam irradiations are 

performed using “open or wedge-filtered jaw fields with or without MLC.” 

 

The CFOPF
a  factor in Equations 43 and 46 works on  Δ𝑆  and Δ𝑉  elements (related to the 

phantom) as a beam intensity correction used for the in-air OPF calculation of OPFin_air
single

 or 

OPFin_air
multi . The present study does not use such corrections for ∆𝑉𝐿 elements (𝐿 = 1, 2, ⋯ , 𝐿max) 

within the MLC and wedge devices (Figure 8) because the primary and scatter dose components 

from these devices are relatively small when compared with those from Δ𝑆 and Δ𝑉 elements 
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related to the phantom. The CFOPF
a  factor gives the same correction to any point (𝑋0, 𝑌0) set on 

the isocenter plane (Figure 8) under a given value of 𝐴MLC
in_jaw

𝐴jaw⁄  and under a given number of 

the irradiation modes (wedge type = 0 − 4). 

 

Next we construct four series of CF𝐾
a , dev𝐾

%, 𝑓𝐾
% and 𝑊𝐾 (𝐾 = 0, 1, 2, ⋯ ) based on calculated and 

measured PDD datasets at a depth of Z=3 cm of water with a reference depth of 𝑍R=10 cm 

(Equation 52), letting CF𝐾
a  denote a K-series regarding the CFOPF

a  factor, dev𝐾
% denote a K-series 

reflecting % deviations of the calculated PDD datasets, 𝑓𝐾
% denote a K-series reconstructed as 

𝑓𝐾
% = 1 − dev𝐾

%/100, and 𝑊𝐾  denote a K-series regarding a specific item that appears while 

handling the CF𝐾
a  expressions (Equations D2, D6, D9 and D12). Each of the K-series is treated as 

a function of 𝐴MLC
in_jaw

𝐴jaw and wedge type⁄ . To avoid mathematical impossibility in the following 

expressions of Equations D5 and D9 containing 𝐴MLC
in_jaw

𝐴jaw⁄  in the denominators, we set 

𝐴MLC
in_jaw

𝐴jaw⁄ = 0.999 for 𝐴MLC
in_jaw

𝐴jaw⁄ ≥ 0.999. However, relatively wide distributions of the dev𝐾
% 

data at 𝐴MLC
in_jaw

𝐴jaw⁄ = 0.999, as shown in Figure D1 (described below), demonstrates that the 

MLC leaves, even outside the jaw field, seem to have some effects on the dose measurement. 

 

The PDD datasets were produced as follows: (a) in case of wedge type = 0 (no wedge), we used 

no MLC field and MLC fields of 𝐴MLC = 4 ×  4 − 20 ×  20 cm2 for each of the jaw fields of 

𝐴jaw = 10 ×  10, 15 ×  15 and 20 ×  20 cm2; (b) in case of wedge type= 1 − 3 (15°, 30° and 45° 

wedges), we used MLC fields of 𝐴MLC = 4 ×  4 − 20 ×  20 cm2 for each of the jaw fields of 

𝐴jaw = 10 ×  10, 15 ×  15 and 20 ×  20 cm2; and (c) in case of wedge type = 4 (60° wedge), we used 

MLC fields of 𝐴MLC = 4 ×  4 − 15 ×  15 cm2 for each of the jaw fields of 𝐴jaw = 10 ×  10 and 15 ×

 15 cm2. 

 

(0) Zero stage (K=0) 

At this stage, for all values of 𝐴MLC
in_jaw

𝐴jaw⁄  and for all numbers of wedge type = 0 − 4, we set 

 𝑊𝐾=0(𝐴MLC
in_jaw

𝐴jaw⁄ ; wedge type) = 0.055,        (D1) 

where the numerical value of 0.055 is taken as appropriate. Then we construct the CF𝐾=0
a  factor 

(as the zero stage of CFOPF
a ) as 

CF𝐾=0
a (𝐴MLC

in_ja𝑤
𝐴jaw; wedge type⁄ ) = exp[− 𝑊𝐾=0(𝐴MLC

in_jaw
𝐴jaw⁄ ; wedge type) ∙ {1 − (𝐴MLC

in_jaw
𝐴jaw⁄ )}].  (D2) 

However, we found that this CF𝐾=0
a  factor cannot always give accurate calculation results for all 

wedge types. Therefore, we let the series of 𝑊𝐾 (𝐾 = 1, 2, ⋯ ) continuing from the 𝑊𝐾=0 term be 

constructed as a function of 𝐴MLC
in_jaw

𝐴jaw⁄  for a given irradiation mode of wedge type. The 
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following is described by taking an irradiation mode of wedge type=2 (30° wedge), for example, 

for constructing expressions for dev𝐾=1,2,3
%  (Equations D4, D8 and D12). 

 

(1) First stage (K=1) 

Based on calculated PDD datasets yielded by the above CF𝐾=0
a  function, we produce the 

following expression for 𝑓𝐾=1
%  that is related to the % deviations (dev𝐾=1

% ) as 

𝑓𝐾=1
% (𝐴MLC

in_jaw
𝐴jaw; wedge type⁄ ) = 1 − dev𝐾=1

% (𝐴MLC
in_jaw

𝐴jaw; wedge type⁄ )/100,                (D3) 

with 

dev𝐾=1
% (𝐴MLC

in_jaw
𝐴jaw; wedge type⁄ ) = 3.5196 (𝐴MLC

in_jaw
𝐴jaw⁄ )

2
− 0.6425(𝐴MLC

in_jaw
𝐴jaw⁄ ) − 2.1610.  (D4) 

with 𝑅2 = 0.918 (coefficient of determination), where the function of dev𝐾=1
%  is yielded (Figure 

D1a) by analyzing the % deviation datasets using the least-squares method. Then the function 

of 𝑊𝐾=1 is constructed as 

 𝑊𝐾=1(𝐴MLC
in_jaw

𝐴jaw⁄ ; wedge type) =

−log[ 𝑓𝐾=1
% (𝐴MLC

in_jaw
𝐴jaw; wedge type⁄ ) ∙  CF𝐾=0

a (𝐴MLC
in_jaw

𝐴jaw; wedge type⁄ )]/{1 − (𝐴MLC
in_jaw

𝐴jaw⁄ )}  (D5) 

Accordingly, the CF𝐾=1
a  factor can be derived as 

CF𝐾=1
a (𝐴MLC

in_jaw
𝐴jaw; wedge type⁄ ) = exp[− 𝑊𝐾=1(𝐴MLC

in_jaw
𝐴jaw⁄ ; wedge type) ∙ {1 − (𝐴MLC

in_jaw
𝐴jaw⁄ )}] 

= 𝑓𝐾=1
% (𝐴MLC

in_jaw
𝐴jaw; wedge type⁄ ) ∙ CF𝐾=0

a (𝐴MLC
in_jaw

𝐴jaw; wedge type⁄ ).                        (D6) 

 

(2) Second stage (K=2) 

Similarly, based on calculated PDD datasets yielded by the above CF𝐾=1
a  function, we produce 

the expression for 𝑓𝐾=2
%  that is related to the dev𝐾=2

%  deviations (Figure D1b) as 

𝑓𝐾=2
% (𝐴MLC

in_jaw
𝐴jaw; wedge type⁄ ) = 1 − dev𝐾=2

% (𝐴MLC
in_jaw

𝐴jaw; wedge type⁄ )/100,                 (D7) 

with 

dev𝐾=2
% (𝐴MLC

in_jaw
𝐴jaw; wedge type⁄ ) = −0.0160(𝐴MLC

in_jaw
𝐴jaw⁄ )

2
+ 0.0918(𝐴MLC

in_jaw
𝐴jaw⁄ ) − 0.0719,  (D8) 

with 𝑅2 = 0.0052. Accordingly, we obtain 

𝑊𝐾=2(𝐴MLC
in_jaw

𝐴jaw⁄ ; wedge type) =

−log[ 𝑓𝐾=2
% (𝐴MLC

in_jaw
𝐴jaw; wedge type⁄ ) ∙  CF𝐾=1

a (𝐴MLC
in_jaw

𝐴jaw; wedge type⁄ )]/{1 − (𝐴MLC
in_jaw

𝐴jaw⁄ )}.  (D9) 

Consequently, the CF𝐾=2
a  factor can be derived as 

CF𝐾=2
a (𝐴MLC

in_jaw
𝐴jaw; wedge type⁄ ) = exp[− 𝑊𝐾=2(𝐴MLC

in_jaw
𝐴jaw⁄ ; wedge type) ∙ {1 − (𝐴MLC

in_jaw
𝐴jaw⁄ )}] 

= 𝑓𝐾=2
% (𝐴MLC

in_jaw
𝐴jaw; wedge type⁄ ) ∙ 𝑓𝐾=1

% (𝐴MLC
in_jaw

𝐴jaw; wedge type⁄ ) ∙  CF𝐾=0
a (𝐴MLC

in_jaw
𝐴jaw; wedge type⁄ ). 

(D10) 
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(3) Third stage (K=3) 

Similarly, based on calculated PDD datasets yielded by the above CF𝐾=2
a  function, we produce 

the expression for 𝑓𝐾=3
%  that is related to the dev𝐾=3

%  deviations (Figure D1c) as 

𝑓𝐾=3
% (𝐴MLC

in_jaw
𝐴jaw; wedge type⁄ ) = 1 − dev𝐾=3

% (𝐴MLC
in_jaw

𝐴jaw; wedge type⁄ )/100,               (D11) 

with 

dev𝐾=3
% (𝐴MLC

in_jaw
𝐴jaw; wedge type⁄ ) 

= −0.0004 (𝐴MLC
in_jaw

𝐴jaw⁄ )
2

+ 0.001(𝐴MLC
in_jaw

𝐴jaw⁄ ) − 0.0007,                               (D12) 

with 𝑅2 = 3E − 07. We have 𝑓𝐾=3
% ≅ 1  for all values of 𝐴MLC

in_jaw
𝐴jaw⁄ . This means that the 

deviations of dev𝐾=3
%  are almost all composed of random errors. Accordingly, we may be able 

to state that the following CF𝐾=3
a  factor can produce reasonable calculation results. This 

factor can be derived as 

CF𝐾=3
a (𝐴MLC

in_jaw
𝐴jaw; wedge type⁄ ) = exp[− 𝑊𝐾=3(𝐴MLC

in_jaw
𝐴jaw⁄ ; wedge type) ∙ {1 − (𝐴MLC

in_jaw
𝐴jaw⁄ )}]  =

𝑓𝐾=3
% (𝐴MLC

in_jaw
𝐴jaw; wedge type⁄ ) ∙ 𝑓𝐾=2

% (𝐴
MLC

injaw 𝐴jaw; wedge type⁄ ) ∙  𝑓𝐾=1
% (𝐴

MLC

injaw 𝐴jaw; wedge type⁄ ) ∙

CF𝐾=0
a (𝐴

MLC

injaw 𝐴jaw; wedge type⁄ ).                                                               (D13) 

The present study utilized the CF𝐾=3
a  function at this stage (K=3) as the CFOPF

a  function in 

Equations  43 and 46, also for the other wedge types than wedge type=2 (30° wedge). 

  

 

Figure D1  Diagrams showing % deviation datasets of 

calculated PDD data from measured data at a depth of 3 

cm of water, as a function of 𝐴MLC
in_jaw

𝐴jaw⁄ , for wedge type=2 

(that is, employing the 30° wedge): (a) dev𝐾=1
% , (b) dev𝐾=2

%  

and (c) dev𝐾=3
%  (K indicates the stage numbers, starting 

with K=0). Each deviation dataset was obtained for jaw 

fields of 𝐴jaw = 10 ×  10 (circles), 15 ×  15(triangles)  and 

20 ×  20 cm2(crosses). Each broken line was obtained by 

applying the least-squares method to all the datasets for 

the three jaw fields. 
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Lastly, we summarize expressions for dev𝐾=1
% , dev𝐾=2

%  and dev𝐾=3
%  for wedge type=0−4, as follows: 

(0) For no wedge (wedge type=0) 

dev𝐾=1
% =  2.5583(𝐴MLC

in_jaw
𝐴jaw⁄ )

2
+  1.9668(𝐴MLC

in_jaw
𝐴jaw⁄ ) −  4.8215   (𝑅2 = 0.961), 

dev𝐾=2
% = −0.2036(𝐴MLC

in_jaw
𝐴jaw⁄ )

2
+  0.3785(𝐴MLC

in_jaw
𝐴jaw⁄ ) −  0.2507   (𝑅2 =0.0245), 

dev𝐾=3
% = −0.0739(𝐴MLC

in_jaw
𝐴jaw⁄ )

2
+  0.0549(𝐴MLC

in_jaw
𝐴jaw⁄ ) −  0.0081   (𝑅2= 0.0011). 

 

(1) For the 15° wedge (wedge type=1) 

      dev𝐾=1
% = 2.8392(𝐴MLC

in_jaw
𝐴jaw⁄ )

2
+  1.0305(𝐴MLC

in_jaw
𝐴jaw⁄ ) −  3.6205   (𝑅2=0.9777), 

 dev𝐾=2
% = −0.1063(𝐴MLC

in_jaw
𝐴jaw⁄ )

2
+  0.2446(𝐴MLC

in_jaw
𝐴jaw⁄ ) −  0.1317   (𝑅2=0.0343), 

     dev𝐾=3
% = 0.0004(𝐴MLC

in_jaw
𝐴jaw⁄ )

2
−  0.0016(𝐴MLC

in_jaw
𝐴jaw⁄ ) +  0.0011   (𝑅2=3E−06). 

 

(2) For the 30° wedge (wedge type=2) 

          dev𝐾=1
% = 3.5196 (𝐴MLC

in_jaw
𝐴jaw⁄ )

2
− 0.6425(𝐴MLC

in_jaw
𝐴jaw⁄ ) − 2.1610   (𝑅2= 0.918), 

          dev𝐾=2
% = −0.0160(𝐴MLC

in_jaw
𝐴jaw⁄ )

2
+ 0.0918(𝐴MLC

in_jaw
𝐴jaw⁄ ) − 0.0719   (𝑅2= 0.0052), 

          dev𝐾=3
% = −0.0004 (𝐴MLC

in_jaw
𝐴jaw⁄ )

2
+ 0.001(𝐴MLC

in_jaw
𝐴jaw⁄ ) − 0.0007   (𝑅2=3E−07). 

 

(3) For the 45° wedge (wedge type=3) 

         dev𝐾=1
% = 3.6778(𝐴MLC

in_jaw
𝐴jaw⁄ )

2
−  0.7701(𝐴MLC

in_jaw
𝐴jaw⁄ ) −  3.7162   (𝑅2=0.8993), 

          dev𝐾=2
% = 0.115(𝐴MLC

in_jaw
𝐴jaw⁄ )

2
+  0.0014(𝐴MLC

in_jaw
𝐴jaw⁄ ) −  0.1188   (𝑅2= 0.0123), 

        dev𝐾=3
% = 0.0085(𝐴MLC

in_jaw
𝐴jaw⁄ )

2
−  0.0103(𝐴MLC

in_jaw
𝐴jaw⁄ ) +  0.0022   (𝑅2=3E−06). 

 

(4) For the 60° wedge (wedge type=4) 

          dev𝐾=1
% = 2.6296(𝐴MLC

in_jaw
𝐴jaw⁄ )

2
+  0.8682(𝐴MLC

in_jaw
𝐴jaw⁄ ) −  2.0372   (𝑅2= 0.9459), 

           dev𝐾=2
% = −0.0882(𝐴MLC

in_jaw
𝐴jaw⁄ )

2
+  0.1456(𝐴MLC

in_jaw
𝐴jaw⁄ ) −  0.0628  (𝑅2=0.0027), 

           dev𝐾=3
% = −0.0002(𝐴MLC

in_jaw
𝐴jaw⁄ )

2
+  0.001(𝐴MLC

in_jaw
𝐴jaw⁄ ) −  0.0007   (𝑅2=6E−07). 


